Abstract

Temporal properties of random lasing under ultrashort pulse excitation are investigated in a two-dimensional disordered medium. The pumping light is described individually and coupled into the rate equations. The Maxwell equations and rate equations are numerically solved by using the finite-difference time domain method. The time evolution of the emission pulse is studied with the variation of the surface-filling fraction, refractive index, and scatterer radius. Results show that the behavior of random lasing depends strongly on the sample parameters. Our work enriches the knowledge about random lasers in the ultrashort pulse pumping regime and offers some guidance for relevant experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call