Abstract

FDTD fundamentals Introduction A fundamental quest in electromagnetics and antenna engineering is to solve Maxwell's equations under various specific boundary conditions. In the last several decades, computational electromagnetics has progressed rapidly because of the increased popularity and enhanced capability of computers. Various numerical techniques have been proposed to solve Maxwell's equations [1]. Some of them deal with the integral form of Maxwell's equations while others handle the differential form. In addition, Maxwell's equations can be solved either in the frequency domain or time domain depending on the nature of applications. The success in computational electromagnetics has propelled modern antenna engineering developments. Among various numerical techniques, the finite difference time domain (FDTD) method has demonstrated desirable and unique features for analysis of electromagnetic structures [2]. It simply discretizes Maxwell's equations in the time and space domains, and electromagnetics behavior is obtained through a time evolving process. A significant advantage of the FDTD method is the versatility to solve a wide range of microwave and antenna problems. It is flexible enough to model various media, such as conductors, dielectrics, lumped elements, active devices, and dispersive materials. Another advantage of the FDTD method is the capability to provide a broad band characterization in one single simulation. Since this method is carried out in the time domain, a wide frequency band response can be obtained through the Fourier transformation of the transient data. Because of these advantages, the FDTD method has been widely used in many electromagnetic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call