Abstract

The temporal pattern of locomotor activity of single Drosophila melanogaster flies freely walking in small tubes is described. Locomotor activity monitored by a light gate has a characteristic time-course that depends upon age and the environmental conditions. Several methods are applied to assess the complexity of the temporal pattern. The pattern varies according to sex, genotype, age and environmental conditions (food; light). Activity occurs clustered in bouts. The intrinsic bout structure is quantified by four parameters: number of light gate passages (counts) per bout, duration of a bout, pause between two successive bouts and mean bout period. In addition, the distribution of the periods between light-gate crossings (inter-count intervals) as function of inter-count interval duration reveals a power law, suggesting that the overall distribution of episodes of activity and inactivity has a fractal structure. In the dark without food, the fractal dimension which represents a measure of the complexity of the pattern is sex, genotype and age specific. Fractality is abolished by additional sensory stimulation (food; light). We propose that time-course, bout structure and fractal dimension of the temporal pattern of locomotor activity describe different aspects of the fly's central pattern generator for locomotion and its motivational control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.