Abstract

We investigate the temporal intensity noise characteristics of analog liquid-crystal-based spatial light modulators and how they affect the device's achievable discrete numeric accuracies in an optical computing system. First we present an analytical development that defines the concept of precision in analog computing systems, then we define a noise metric and a precision-optimal quantizer for determining the discrete numeric characteristics of the devices. Second we present an experimental discussion in which a low-noise test facility constructed for this investigation is described, and the noise characteristics of three commercially available liquid-crystal-based modulators are measured and analyzed. The accuracy implications of this measured noise are then discussed within the context of the analytical model for each modulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.