Abstract

Knowledge about the genetic underpinnings of invasions—a theme addressed by invasion genetics as a discipline—is still scarce amid well documented ecological impacts of non-native species on ecosystems of Patagonia in South America. One of the most invasive species in Patagonia’s freshwater systems and elsewhere is rainbow trout (Oncorhynchus mykiss). This species was introduced to Chile during the early twentieth century for stocking and promoting recreational fishing; during the late twentieth century was reintroduced for farming purposes and is now naturalized. We used population- and individual-based inference from single nucleotide polymorphisms (SNPs) to illuminate three objectives related to the establishment and naturalization of Rainbow Trout in Lake Llanquihue. This lake has been intensively used for trout farming during the last three decades. Our results emanate from samples collected from five inlet streams over two seasons, winter and spring. First, we found that significant intra- population (temporal) genetic variance was greater than inter-population (spatial) genetic variance, downplaying the importance of spatial divergence during the process of naturalization. Allele frequency differences between cohorts, consistent with variation in fish length between spring and winter collections, might explain temporal genetic differences. Second, individual-based Bayesian clustering suggested that genetic structure within Lake Llanquihue was largely driven by putative farm propagules found at one single stream during spring, but not in winter. This suggests that farm broodstock might migrate upstream to breed during spring at that particular stream. It is unclear whether interbreeding has occurred between “pure” naturalized and farm trout in this and other streams. Third, estimates of the annual number of breeders (N b) were below 73 in half of the collections, suggestive of genetically small and recently founded populations that might experience substantial genetic drift. Our results reinforce the notion that naturalized trout originated recently from a small yet genetically diverse source and that farm propagules might have played a significant role in the invasion of Rainbow Trout within a single lake with intensive trout farming. Our results also argue for proficient mitigation measures that include management of escapes and strategies to minimize unintentional releases from farm facilities.

Highlights

  • Releases of non-native species can cause economic losses and ecological impacts to native ecosystems [1,2,3]

  • Our results reinforce the notion that naturalized trout originated recently from a small yet genetically diverse source and that farm propagules might have played a significant role in the invasion of Rainbow Trout within a single lake with intensive trout farming

  • For naturalized Rainbow Trout from Lake Llanquihue, pairwise θ showed that intra- population genetic variance was greater than inter-population genetic variance, downplaying the importance of spatial divergence during the process of naturalization

Read more

Summary

Introduction

Releases of non-native species can cause economic losses and ecological impacts to native ecosystems [1,2,3]. Profits from farming of salmonids in South America are even higher as Chile, in particular, has become the world’s second largest producer of farmed salmonids with revenue in the order of billions of dollars [9,14,15]. Farming is another important source of propagules mediating the establishment and naturalization of salmonids in this region as certain methods of cultivation and husbandry of farmed fish are often linked to invasions [2,16,17]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.