Abstract

The total electron content (TEC) derived from GNSS measurements at a trans-hemispheric meridional chain of ground stations around 95°E longitude are used to study the quiet time inter-hemispheric structure and dynamics of the equatorial ionization anomaly (EIA) during the period March 2015 to February 2016. The stations are Dibrugarh (27.5°N, 95°E, 43° dip), Kohima (25.6°N, 94.1°E, 39° dip), Aizawl (23.7°N, 92.8°E, 36° dip), Port Blair (11.63°N, 92.71°E, 9° dip) and Cocos Islands (12.2°S, 96.8°E, 43° dip). The observation shows that the northern crest of the EIA lies in the south of 23°N (Aizawl) in all seasons but recedes further south towards the equator during December solstice. The largest poleward expansion of the northern (southern) EIA is observed in the March equinox (December solstice). The equinoctial and hemispherical asymmetry of TEC is noted. The winter anomaly is observed in the northern hemisphere but not in the southern hemisphere. The highest midday TEC over any station is observed in the March equinox. The TEC in southern summer (December solstice) is significantly higher than that in the northern summer (June solstice). The observed northern EIA contracts equatorward in the postsunset period of solstice but the southern EIA persists late into the midnight in the December solstice. The asymmetry may be attributed to the different geographic location of the magnetically conjugate stations. The SAMI3 simulations broadly capture the EIA structure and the inter-hemispheric asymmetry during solstices. The difference between observations and the SAMI3 is higher in March equinox and December solstice. The higher E × B vertical drift in the 90–100°E sector and the large geographic-geomagnetic offset in observing stations may have contributed to the observed differences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call