Abstract

Conventional B-mode ultrasound imaging lacks soft tissue contrast to differentiate various tissue types. Emerging ultrasound imaging technologies have therefore focused on extracting tissue parameters important for tissue differentiation such as scatterer size, tissue elasticity, and micro-vasculatures. Among these technologies, shear wave elastography (SWE) is an approach that measures tissue viscoelastic parameters. Our group has proposed Temporal Enhanced Ultrasound (TeUS) that differentiates tissue types without requiring any external stimuli. Through analytical derivations and simulations, we previously showed that the source of tissue typing information in TeUS is physiological micro-vibrations resulting mainly from perfusion. We further demonstrated that TeUS is sensitive to the size and distributions of scatterers in the tissue, as well as its visco-elasticity. In this paper, we designed ultrasound phantoms to mimic tissue with two different elasticities and two scatterer sizes. A exible microtube was embedded in the phantoms to generate local micro-vibrations. We experimentally demonstrate the relationship between TeUS and SWE and their sensitivity to tissue elasticity and scatterer size. This work indicated that while shear wave measurements are sensitive to the phantoms viscoelasticity, they are not sensitive to ultrasound scatterer size. On the contrary, the TeUS amplitude depends on both scatterer size and tissue viscoelasticity. This work could potentially inform clinicians of choosing imaging modalities and interventions based on each cancer's unique traits and properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.