Abstract

AbstractInvestigating the response of land surface energy exchange to key climatic signals such as the East Asian summer monsoon (EASM) is essential for understanding the intensive interactions in the Earth system. This study focuses on the summer monsoon transition zone (SMTZ) in China, which has a climate rather sensitive to the EASM activity, and examined the response of land surface energy exchange over the SMTZ to summer monsoon activity. A flux evaluation of five reanalysis/modeling data sets indicates that JRA-55(the Japane 55-year Reanalysis) reasonably represents interannual variations of surface heat fluxes over the SMTZ. The EASM activity is accurately identified in the SMTZ by introducing a monsoon temporal duration index (MTDI), which presents climate variations of summer rainfall and EASM activity better than commonly used summer monsoon indexes. Based on MTDI and long-term flux data sets, it was found that the interannual fluctuation of the EASM intensively controls surface energy partitioning and turbulent heat exchange but has a weak impact on radiative processes over the SMTZ. Furthermore, surface sensible and latent heat fluxes significantly responded to the influential period of the summer monsoon, exhibiting approximately quadratic/logarithmic relationships with the MTDI. More prominent interannual variabilities of turbulent heat fluxes were observed in weak summer monsoon years, during which an active interaction between surface energy exchange and a warming and drying climate occurred. An ensemble empirical mode decomposition (EEMD) analysis confirms that EASM activity dominates the quasi-biennial and multidecadal variations of turbulent heat fluxes over the SMTZ, which may be achieved by the transport of tropical quasi-biennial and Pacific Decadal Oscillation (PDO) signals to the mid-latitudes of East Asia. The expected intensification of summer monsoon activity in the future may induce acceleration of energy and hydrological cycle and exert a substantial impact on the availability of water and the ecosystem stability over the SMTZ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call