Abstract

In the garden lizard, Calotes versicolor, which lacks identifiable sex chromosomes, incubation temperature also does not have a deterministic effect on the gender. However, the embryos reared at high temperature (33-35 degrees C) have a shorter duration of incubation as well as gonadal differentiation. In contrast, exogenous application of the male hormone testosterone to embryos at ambient temperature (28 degrees C) results in almost all individuals with only testis. Thus the testosterone treatment reverts genic females to males and accelerates the differentiation of testis, a feature similar to the high-temperature treatment. Treatment of eggs with estradiol shows no difference from that seen in the untreated eggs. The present series of experiments was done to establish the "window" of testosterone sensitivity and to understand the interaction between sex hormones and high temperature on gonadal differentiation. The period between day 5 and 15 of embryonic development was the window period of testosterone sensitivity for sex reversal. This period coincided with the formation of the genital ridge and its differentiation into cortex and medulla. Treatment of the 33 degrees C-reared embryos with testosterone resulted in hatchlings of both the sexes, in contrast to only males at the ambient temperature. In contrast, at the same temperature (33 degrees C), all the dihydrotestosterone (nonaromatisable testosterone)-treated embryos hatched into males. However, those given estradiol showed no sex bias regardless of the day of application and the concentration of drug. Eggs were also treated with aromatase inhibitor, CGS 16949 A, at ambient temperature and at 33 degrees C. All the 33 degrees C eggs to which the drug was given on day 25 hatched into males. These results suggest that though high temperature has no direct effect on sex determination in this species, it may have a stimulatory effect on aromatase activity, leading to the conversion of the exogenously applied testosterone into estradiol and permitting ovarian differentiation in the genic females. It also follows from the present report that the pathway of testis formation in Calotes versicolor is triggered much earlier, and irreversibly, than that for the ovary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.