Abstract
The Arecibo high-power, high-frequency (HF) facility and 430 MHz radar are used to examine the temporal development of the HF-induced Langmuir and ion turbulences from 1 ms to many minutes after the turn-on of the HF beam in the F region. All HF observations begin in a smooth, stratified, stable plasma. “Cold start” HF transmissions are employed to avoid remnant irregularities from prior HF transmissions. HF-excited plasma line (HFPL) and ion line echoes are used to monitor the evolution of the turbulence. In the evening/nighttime the HFPL develops in three reproducible stages. Over time scales of 0 to 10–20 ms (possibly 40 ms), the smooth plasma conditions are maintained, and the results are consistent with theoretical models of the excitation of strong Langmuir turbulence near HF reflection. This entails the initiation of the so-called “caviton production cycle.” The turbulence from the parametric decay instability is detected at lower altitudes where the radar wave vector matches those of the HF-enhanced waves. The data suggests that the two processes coexist in the region in between. After ~40 ms the “overshoot process” begins and consists of a downward extension of the HFPL from the HF reflection region to heights ~1.1 km below followed by a retreat back to the reflection region. The whole overshoot process takes place over a time scale of ~3 s. Thereafter the echo remains near HF reflection for 20–90 s after HF turn-on. The HFPL echo subsequently breaks up into patches because of the formation of large-scale electron density structures in the plasma. New kinetic models indicate that suprathermal electrons excited in the plasma by, for example, caviton burn-out serve to regulate plasma turbulence in the modified ionospheric volume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.