Abstract

This paper proposes a temporal decomposition strategy to reduce the computation time of security-constrained unit commitment (SCUC). The novelty of this paper is twofold. The scheduling horizon is decomposed into multiple subhorizons. The concept of coupling intervals is introduced, and a set of auxiliary counting variables and logical expressions along with their equivalent linear models are formulated to handle intertemporal ramp constraints and minimum on/off times between consecutive subhorizons. An accelerated analytical target cascading (A-ATC) algorithm is developed to coordinate SCUC subproblems and find the optimal solution for the whole operation horizon in a distributed manner. An initialization strategy is presented to enhance the convergence performance of A-ATC. The proposed algorithm is tested on four test systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.