Abstract

AbstractThe seismic performance of existing structures can be assessed based on nonlinear static procedures, such as the Capacity Spectrum Method. This method essentially approximates peak responses of an inelastic single‐degree‐of‐freedom (SDOF) system using peak responses of an equivalent linear SDOF model. In this study, the equivalent linear models of inelastic SDOF systems are developed based on the constant strength approach, which does not require iteration for assessing the seismic performance of existing structures. To investigate the effects of earthquake type and seismic region on the equivalent linear models, four ground‐motion data sets—Japanese crustal/interface/inslab records and California crustal records—are compiled and used for nonlinear dynamic analysis. The analysis results indicate that: (1) the optimal equivalent linear model parameters (i.e. equivalent vibration period ratio and damping ratio) decrease with the natural vibration period, whereas they increase with the strength reduction factor; (2) the impacts of earthquake type and seismic region on the equivalent linear model parameters are not significant except for short vibration periods; and (3) the degradation and pinching effects affect the equivalent linear model parameters. We develop prediction equations for the optimal equivalent linear model parameters based on nonlinear least‐squares fitting, which improve and extend the current nonlinear static procedure for existing structures with degradation and pinching behavior. Copyright © 2010 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.