Abstract

The de novo assembly of gap junctions during compaction in the 8-cell stage of mouse development is a temporally regulated event. We have performed experiments designed to explore the relationship between this event and DNA replication in the second, third, and fourth cell cycles after fertilization. Inhibition of DNA synthesis by continuous treatment with the DNA synthesis inhibitor, aphidicolin, during the third and fourth cell cycles had no effect on the establishment of gap junctional coupling during compaction. However, a delay of 10 hours in DNA synthesis during the second cell cycle caused by a transient aphidicolin treatment resulted in the failure of gap junctional coupling at the time of compaction. Thus the timing of establishment of gap junctional coupling, like the timing of compaction itself, is linked to DNA replication in the 2-cell stage. Immunofluorescence analysis showed that the failure of gap junctional coupling after aphidicolin treatment in the 2-cell stage is correlated with the failure of nascent connexin43 to be inserted into plasma membranes. We propose that the developmental 'clock' that controls gap junction assembly is set in motion by events surrounding the second cycle of DNA replication, and that this 'clock' ultimately controls the post-translational processing of connexin43.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.