Abstract

The regulation of trophectoderm differentiation in mouse embryos was studied by inhibiting DNA synthesis with aphidicolin, a specific inhibitor of DNA polymerase alpha. Embryos were exposed to aphidicolin (0.5 micrograms/ml) for 16 h at various preimplantation stages and scored for their ability to form a blastocyst and develop beyond the blastocyst stage. Embryos were most sensitive to aphidicolin at the late 4-cell stage and became progressively less sensitive as they developed. Aphidicolin inhibited blastocyst formation by 70%, 100%, 77%, and 24% after treatment at the 2-cell, 4-cell, noncompacted 8-cell, and compacted 8-cell stages, respectively. Although the inhibitory effect of aphidicolin on blastocyst formation decreased markedly as 8-cell embryos underwent compaction, developmental capacity beyond the blastocyst stage was poor after treatment of either noncompacted or compacted 8-cell embryos. Treatment at the morula and early blastocyst stages was less harmful to embryos than treatment at earlier stages but reduced the number of trophoblast outgrowths by interfering with hatching. Autoradiographic analysis showed that during aphidicolin treatment, incorporation of 3H-thymidine was inhibited over 90% at all stages examined, indicating an inhibition of DNA synthesis. Because inhibition of blastocyst formation by aphidicolin decreased at the compacted 8-cell stage, we suggest that approximately the first half of the fourth DNA replication cycle is critical for subsequent blastocyst formation. Furthermore, the poor further development of blastocysts formed after aphidicolin treatment of compacted 8-cell embryos suggests that the DNA replication requirements for initial trophectoderm differentiation are distinct from requirements for further development of blastocysts in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call