Abstract

In bacteria, important genes are often controlled at the transcriptional level by several factors, forming a complex and intertwined web of interactions. Yet, transcriptional regulators are often studied separately and little information is available concerning their interactions. In this work, we dissect the regulation of the major virulence gene pelD in D. dadantii by taking into account the effects of individual binding sites for regulatory proteins FIS and CRP, and the impact of a newly discovered divergent promoter div. Using a combination of biochemistry and genetics approaches we provide an unprecedented level of detail on the multifactorial regulation of bacterial transcription. We show that the growth phase dependent regulation of pelD is under the control of changing composition of higher-order nucleoprotein complexes between FIS, CRP, div and pelD during the growth cycle that allow sequential expression of div and pelD in the early and late exponential growth phases, respectively. This work highlights the importance of “orphan” promoters in gene regulation and that the individual binding sites for a regulator can serve several purposes and have different effects on transcription, adding a new level of complexity to bacterial transcriptional regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call