Abstract
We analyze the effect of a high-finesse Fabry-Pérot interferometer on the temporal coherence properties of scalar optical plane-wave pulse trains. We focus on the cases of single-peak and double-peak transmissions of Gaussian Schell-model (GSM) and supercontinuum (SC) pulses. For the GSM light, we show how the characteristics of the average intensity and temporal degree of coherence of the transmitted pulses depend on the coherence parameters of the incident field. Regarding the SC light, the output is found to depend specifically on the location of the transmission peak(s) within the average spectrum. The results demonstrate that a Fabry-Pérot etalon can act as a simple passive element for tailoring the temporal (and spectral) coherence properties of optical pulse trains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.