Abstract

We examine the temporal coherence properties of trains of nonidentical short optical pulses in the framework of the second-order coherence theory of nonstationary light. Considering Michelson's interferometric measurement of temporal coherence, we demonstrate that time-resolved interferograms reveal the full two-time temporal coherence function of the partially coherent pulse train. We also show that the result given by the time-integrated Michelson interferogram equals the true degree of temporal coherence only when the pulse train is quasi-stationary, i.e., the coherence time is a small fraction of the pulse duration. True two-time and integrated coherence functions produced by specific models representing perturbed trains of mode-locked pulses and supercontinuum pulse trains produced in nonlinear fibers are illustrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.