Abstract

Imaging in electron microscopy is adversely affected by partial electron spatial and temporal coherence. Temporal coherence has been treated theoretically in the past using the method pioneered fifty years ago by Hanßen and Trepte, who assumed a Gaussian energy distribution. However, state-of-the-art instruments employ field emission (FE) sources that emit electrons with a non-Gaussian energy distribution. We have updated the treatment of temporal coherence to describe the effects of an arbitrary energy distribution on image formation. The updated approach is implemented in Fourier optics simulations to explore the effect of FE on image formation in conventional, non-aberration-corrected (NAC) and aberration-corrected (AC) low energy electron microscopy. It is found that the resolution that can be achieved for the FE distribution is only slightly degraded compared to a Gaussian distribution with the same energy spread. FE also produces a focus offset. These two effects are weaker for AC than for NAC microscopy. These and other insights may be relevant to the selection of the aperture size that optimizes resolution and to analyses that make use of focal image series. The approach developed here is also applicable to transmission electron microscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call