Abstract

Temporal chaotic character of vortex motion in systems where defects are arranged in periodic arrays has been investigated by computer simulation. Due to the high nonlinearity of the vortex–defect interaction, the temporal evolution of the vortex motion is chaotic with a power spectrum similar to what have been observed in the experiments. It is found that the strength of both the vortex–vortex and vortex–defect interactions have no significant effects on the chaotic motion of the vortices, however, the mismatch between these two interactions causes attractor crisis of the system. Different from them, the Lorentz force is not the origin of the attractor crisis, but it causes a divergent motion of the vortex (i.e., the flux flow).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.