Abstract
AbstractThe study describes a method of evaluating numerical weather prediction models by comparing the characteristics of temporal changes in simulated and observed 10-m (AGL) winds. The method is demonstrated on a 1-yr collection of 1-day simulations by the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) over southern New Mexico. Temporal objects, or wind events, are defined at the observation locations and at each grid point in the model domain as vector wind changes over 2 h. Changes above the uppermost quartile of the distributions in the observations and simulations are empirically classified as significant; their attributes are analyzed and interpreted.It is demonstrated that the model can discriminate between large and modest wind changes on a pointwise basis, suggesting that many forecast events have an observational counterpart. Spatial clusters of significant wind events are highly continuous in space and time. Such continuity suggests that displaying maps of surface wind changes with high temporal resolution can alert forecasters to the occurrence of important phenomena. Documented systematic errors in the amplitude, direction, and timing of wind events will allow forecasters to mentally adjust for biases in features forecast by the model.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have