Abstract
BackgroundMalaria is still one of the serious public health problems in Grande Comore Island, although the number of annual cases has been greatly reduced in recent years. A better understanding of malaria parasite population diversity and transmission dynamics is critical for assessing the effectiveness of malaria control measures. The objective of this study is to investigate temporal changes in genetic diversity of Plasmodium falciparum populations and multiplicity of infection (MOI) in Grande Comore 10 years after introduction of ACT.MethodsA total of 232 P. falciparum clinical isolates were collected from the Grande Comore Island during two sampling periods (118 for 2006‒2007 group, and 114 for 2013‒2016 group). Parasite isolates were characterized for genetic diversity and complexity of infection by genotyping polymorphic regions in merozoite surface protein gene 1 (msp-1), msp-2, and msp-3 using nested PCR and DNA sequencing.ResultsThree msp-1 alleles (K1, MAD20, and RO33), two msp-2 alleles (FC27 and 3D7), and two msp-3 alleles (K1 and 3D7) were detected in parasites of both sampling periods. The RO33 allele of msp-1 (84.8%), 3D7 allele of msp-2 (90.8%), and K1 allele of msp-3 (66.7%) were the predominant allelic types in isolates from 2006–2007 group. In contrast, the RO33 allele of msp-1 (63.4%), FC27 allele of msp-2 (91.1%), and 3D7 allele of msp-3 (53.5%) were the most prevalent among isolates from the 2013–2016 group. Compared with the 2006‒2007 group, polyclonal infection rates of msp-1 (from 76.7 to 29.1%, P < 0.01) and msp-2 (from 62.4 to 28.3%, P < 0.01) allelic types were significantly decreased in those from 2013‒2016 group. Similarly, the MOIs for both msp-1 and msp-2 were higher in P. falciparum isolates in the 2006–2007 group than those in 2013–2016 group (MOI = 3.11 vs 1.63 for msp-1; MOI = 2.75 vs 1.35 for msp-2). DNA sequencing analyses also revealed reduced numbers of distinct sequence variants in the three genes from 2006‒2007 to 2013‒2016: msp-1, from 32 to 23 (about 28% decline); msp-2 from 29 to 21 (about 28% decline), and msp-3 from 11 to 3 (about 72% decline).ConclusionsThe present data showed dramatic reduction in genetic diversity and MOI among Grande Comore P. falciparum populations over the course of the study, suggesting a trend of decreasing malaria transmission intensity and genetic diversity in Grande Comore Island. These data provide valuable information for surveillance of P. falciparum infection and for assessing the appropriateness of the current malarial control strategies in the endemic area.
Highlights
Malaria is still one of the serious public health problems in Grande Comore Island, the num‐ ber of annual cases has been greatly reduced in recent years
In Anjouan and Moheli, there was a limited numbers of malaria annual cases during 2014 to 2016 (7 and 5 in 2014; 3 and 8 in 2015; 4 and 6 in 2016, respectively) without local malaria infection; in contrast, the Grande Comore accounted for about 99% of the total of malaria annual cases reported in Comoros during 2013–2016 (e.g. 53,979 in 2013; 2130 in 2014; 1061 in 2015; 1362 in 2016) due to low coverage level of artemisininbased combination therapy (ACT)-based mass drug administration (MDA)
Some of the P. falciparum Grande Comore isolates with msp-2 FC27 and 3D7 haplotypes in this study showed 100% identity with other strains from Vietnam (AAG47596 with FC27-20), while other haplotypes (FC27-1 to FC27-19, FC27-19, 3D7-1 to 3D7-15) were new alleles identified in this study
Summary
Malaria is still one of the serious public health problems in Grande Comore Island, the num‐ ber of annual cases has been greatly reduced in recent years. To effectively control malaria in Comoros, many malaria control measures have been deployed since 2000s, including indoor residual sprayings (IRS), long-lasting insecticide nets (LLINs), artemisininbased combination therapy (ACT), intermittent presumptive treatment (IPT) for all pregnant women, and, mass drug administration (MDA) of ACT. These malaria control measures have resulted in substantial decrease malaria infection, from 108,260 cases in 2006 to 1072 in 2015 (about 99.0% decline) in Comoros, with no malaria-related deaths. To achieve an ambitious goal of completely eliminating malaria by 2020 in Comoros, there is an urgent need to develop effective and affordable malaria control and treatment strategies
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have