Abstract

BackgroundField studies have reported conflicting results regarding changes in biomarkers at high altitude. This study measured temporal changes in biomarkers and compared the differences between individuals with and without acute mountain sickness (AMS). Materials and methodsThis study included 34 nonacclimatized healthy participants. Ten-milliliters of blood were collected at four time points: 3 days before ascent (T0), on two successive nights at 3150 m (T1 and T2), and 2 days after descent (T3). Participants were transported by bus from 555 m to 3150 m within 3 hours. AMS was diagnosed using the self-reported Lake Louise Scoring (LLS) questionnaire. ResultsCompared with T0, significant increases in E-selectin and decreases in vascular endothelial growth factor (VEGF) levels were observed at high altitude. Significantly increased C-reactive protein (CRP), monocyte chemoattractant protein-1 (MCP-1), and S100 calcium-binding protein B (S100B) levels were observed at T2, and significantly decreased vascular cell adhesion molecule-1 (VCAM-1) levels were observed at T3. Eighteen (53%) participants developed AMS. Changes in E-selectin, CRP, MCP-1, and S100B levels were independent of AMS. Relative to individuals without AMS, those with AMS had significantly higher atrial natriuretic peptide (ANP) and VCAM-1 levels and lower plasminogen activator inhibitor-1 (PAI-1) levels at T1 and higher brain natriuretic peptide and lower VEGF and PAI-1 levels at T3. LLSs were positively correlated with ANP and VCAM-1 levels and negatively correlated with PAI-1 levels measured at T1. ConclusionsAfter acute ascent, individuals with and without AMS exhibited different trends in biomarkers associated with endothelial cell activation and natriuretic peptides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call