Abstract
Abstract Different approaches were applied to assess soil moisture optima and tolerance of the ecological niche temporal projection of terrestrial invertebrates within an experimental polygon created to investigate the reclamation processes after deep underground hard-rock mining in the Ukrainian steppe drylands. Sampling was carried out in 2013–2015 on a variant of artificial soil (technosols). To investigate the spatiotemporal variation in the abundance, species richness and species composition of invertebrate assemblages the animals were sampled using pitfall traps. The readily available water for plants, precipitation, wind speed, atmospheric temperature, atmospheric humidity, and atmospheric pressure were used as environmental predictors. The two-dimension geographic coordinates of the sampling locations were used to generate a set of orthogonal eigenvector-based spatial variables. Time series of sampling dates were used to generate a set of orthogonal eigenvector-based temporal variables. Weighted averaging, generalized linear mixed models, Huisman-Olff-Fresco models expanded by Jansen-Oksanen, correspondence analysis, and constrained correspondence analysis were used to estimate soil moisture species optima and tolerance. The moisture content in the technosols was revealed to be the most important factor determining the temporal dynamics of terrestrial invertebrate community in conditions of semi-arid climate and the ecosystem which formed as a result of the reclamation process. The species response to the soil water content is affected not only by the soil water content but also by the complex of the other environmental, temporal, and spatial factors. The effect of other factors on the species response must be extracted previously to find real estimations of the species optima and tolerance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.