Abstract

This study was to investigate temporal and spatial variation of microplastics in surface water and sediment in the urban rivers of Harbin during dry and wet season. Water samples (n = 25) in Xinyi River (n = 13) and Ashe River (n = 12) were collected from the selected sampling points. Microplastics in urban rivers in Harbin included polyethylene (PE), polypropylene (PP), polystyrene (PS), polyamide (PA), polyvinyl chloride (PVC) and polyethylene terephthalate (PET). The results show that urban rivers in Harbin had relatively mild microplastic abundance with most fragments in shape and colorless in color. PP and PE were the major polymers in surface water samples, while PVC and PET were the major polymers in sediment, which were dominated by large-size and granulate shape microplastics. Source apportionment demonstrate that the main sources of microplastics in Xinyi River and Ashe River during dry season were domestic wastewater and effluent from rainfall, while the main sources of microplastics in Xinyi River and Ashe River during wet season were wastewater, atmospheric sedimentation, and agricultural source. The morphology of microplastics in surface water and sediment in urban rivers of Harbin was negatively correlated with water velocity and positively correlated with the concentration of suspended matter, dissolved oxygen, and conductivity. Riparian vegetation on the sides of Xinyi and Ashe River decreased migration process of microplastics by vegetal purification and then resulted in low abundance of microplastics. In conclusion, this study highlighted the occurrence characteristics, source apportionment and environmental influencing factors of microplastics in urban rivers of Harbin, which may develop new insights into the reduction of abundance of microplastics in the urban rivers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.