Abstract
Microplastics (MPs) are globally recognized as an emerging environmental threat, particularly in the aquatic environment. This study presents baseline data on the occurrence and distribution of MPs in sediments and surface water of major rivers in southwestern Nigeria. Microplastics were extracted by density separation and polymer identification using Fourier transformed infrared spectroscopy in attenuated total reflectance mode (FTIR-ATR). The abundance of MPs in surface sediment and water samples across all locations ranged from 12.82 to 22.90 particle/kg dw and 6.71 to 17.12 particle/L during the dry season and 5.69 to 14.38 particle/kg dw and 12.41 to 22.73 particle/L during the wet season, respectively. On average, fiber constituted the highest percentage of MP in sediments (71%) and water (67%) while foam accounted for the lowest values of 0.6% and 1.7%, respectively. Polypropylene(PP) and polyethylene (PE) were the main MPs across all locations based on Fourier transform infrared spectroscopy (FTIR). MPs of size < 1mm were the most abundant (≥ 55%) on average in both water and sediments. The study identified run-off from human activities and industrial wastewater as potential sources of MP exposure based on positive matrix factorization. The study suggests assessing the impact of different land-use activities on MPs occurrence and distribution in addition to quantifying MPs in seafood as a way forward in food safety management systems for further studies. This study confirmed the occurrence and widespread distribution of MPs in surface water and sediments and provides a database on MP pollution in Nigeria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.