Abstract

Wetlands are valued for their high biodiversity and for their ecosystem services. However, we still do have a poor understanding of their role in the redox transformation of contaminants such as mercury, particularly in fluvial settings. Seasonal and spatial variations in dissolved gaseous mercury (DGM) distribution and production were studied in the Bay St. François, a wetland in the St. Pierre Lake, a fluvial lake of the St. Lawrence River, in Quebec, Canada. A high spatial resolution for DGM, with samples taken every 10-cm depth, was used in field measurements. Through a series of parallel field and incubation experiments, we assessed the main factors determining Hg(0) transformations as a function of depth, seasons, and presence/absence of macrophyte beds. Besides light penetration in the water column and water temperature, iron and dissolved organic carbon likely stimulated Hg(II) reduction. Inversely, chloride favored Hg(0) oxidation. Macrophytes and associated epiphytes appeared to be important sites of adsorption/absorption of Hg(II) and likely of DGM. It seems however that the effects of macrophytes were restricted to immediately adjacent waters. Near the bottom, under anoxic conditions, the reduction of Hg(II) was highly promoted. In addition, sediments and decomposing macrophytes seemed to release DGM and/or reducible Hg to bottom waters. Overall, differences in DGM between surface and bottom waters tended to be more accentuated than observed differences in DGM between macrophyte beds and sites devoid of plant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.