Abstract

Elemental mercury (Hg0) is the major form of mercury (Hg) emitted into the environment via anthropogenic activities, resulting in the distribution of Hg worldwide via atmospheric transport. Hg0 in oceans plays an important role in global Hg cycling, mainly by affecting the oceanic-atmospheric exchange of Hg. Due to the large amounts of Hg that are released into Chinese coastal seas from rivers and other sources, Chinese coastal seas are thought to be important sources of Hg in open oceans and in the atmosphere. There have been some studies on the distribution of dissolved gaseous mercury (DGM) in Chinses coastal seas and their controlling factors. However, most of these studies were focused on the surface seawater. There is still a lack of comprehensive study on the DGM through the entire water column in Chinese coastal seas. In this study, two cruises were conducted in August 2017 and in December 2017 to January 2018 to identify the distribution of DGM and its controlling factors in the Yellow Sea (YS) and the Bohai Sea (BS). The concentrations of DGM were higher in summer (167.5 ± 121.4 pg/L) than in winter (41.5 ± 25.5 pg/L), reflecting a significant seasonal variation in DGM. DGM concentrations in the BS and the YS were higher than in open oceans and lower than in some coastal regions. DGM concentrations were generally highest in the BS, followed by the northern YS and the southern YS in summer, whereas the reverse trend was observed in winter. DGM in seawater presented a complicated spatial distribution pattern, with high DGM concentration areas present both nearshore and offshore areas. This result indicates that both terrestrial input and in situ production may play important roles in controlling the DGM distribution. Correlation and multiple regression analyses suggested that temperature (T) and wind speed may be important factors affecting the seasonal variation in DGM in the YS and the BS, and reactive Hg (RHg), dissolved Hg (DHg), dissolved oxygen (DO) and suspended particulate matter (SPM) play important roles in controlling the spatial distribution of DGM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call