Abstract

AbstractThe newly developed Expendable Digital Dropsondes (XDDs) allow for high spatial and temporal resolution observations of the kinematic and thermodynamic structures in tropical cyclones (TCs). It is important to evaluate both the temporal and spatial autocorrelations within the recorded data to address concerns about spatial interpolation, statistical significance of individual data points, and launch-rate spatial requirements for future dropsonde studies in TCs. Data from 437 XDDs launched into Hurricanes Marty (27–28 September), Joaquin (2–5 October), and Patricia (20–23 October) during the 2015 Tropical Cyclone Intensity (TCI) experiment are used to compute temporal and spatial autocorrelations for vertical velocity, temperature, horizontal wind speed, and equivalent potential temperature. All of the examined variables had temporal autocorrelation scales between approximately 10 and 40 s, with most between 20 and 30 s. Most of the spatial autocorrelation scales were estimated to be 3–10 km. The temporal autocorrelation scales for vertical velocity, horizontal wind speed, and equivalent potential temperature were correlated with updraft depth. Vertical velocity usually had the smallest mean, and median, temporal and estimated spatial autocorrelation scales of approximately 20 s and 3–6 km, respectively. The estimated horizontal scales are below the median sounding spacing and suggest that an increase in the launch rate of the XDDs by a factor of 3–4 from the TCI sampling rate is needed to adequately depict TC kinematics and structure in transects of soundings. The results also indicate that current temporal sampling rates are adequate to depict TC kinematics and structure in a single sounding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call