Abstract

Reactive oxygen species are important cause of tissue injury during cerebral ischemia and reperfusion (I/R). Superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) are intracellular enzymes responsible for endogenous antioxidant defense of tissues affected by I/R. The aim of this study was to examine temporal and regional changes of SOD and GSH-Px activities in animals exposed to transient focal cerebral ischemia. Male Wistar Hannover rats were subjected to the right middle cerebral artery occlusion for 2 h. The animals were sacrificed immediately, 0·5, 1, 2, 3, 6, 24, 48, 72 or 168 h after ischemic procedure. SOD and GSH-Px activities were determined spectrophotometrically in the hippocampus and parietal cortex, both unilaterally and contralaterally to the occlusion. Sham-operated animals were used as the control group. Our results indicated that transient focal cerebral ischemia causes significant changes in SOD activities in the hippocampus and parietal cortex such as in GSH-Px activities in the parietal cortex, unilaterally and contralaterally to the lesion in rats during different reperfusion periods. Statistically significant activation of GSH-Px was registered neither in the right nor in the left hippocampus of ischemic animals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call