Abstract

The physical and chemical properties of biological membranes are intimately linked to their bounding aqueous interfaces. Supported phospholipid bilayers, obtained by surface-assisted rupture, fusion, and spreading of vesicular microphases, offer a unique opportunity, because engineering the substrate allows manipulation of one of the two bilayer interfaces as well. Here, we review a collection of recent efforts, which illustrates deliberate substrate-membrane coupling using structured surfaces exhibiting chemical and topographic patterns. Vesicle fusion on chemically patterned substrates results in co-existing lipid phases, which reflect the underlying pattern of surface energy and wettability. These co-existing bilayer/monolayer morphologies are useful both for fundamental biophysical studies (e.g., studies of membrane asymmetry) as well as for applied work, such as synthesizing large-scale arrays of bilayers or living cells. The use of patterned, static surfaces provides new models to design complex membrane topographies and curvatures. Dynamic switchable-topography surfaces and sacrificial trehalose based-substrates reveal abilities to dynamically introduce membrane curvature and change the nature of the membrane-substrate interface. Taken together, these studies illustrate the importance of controlling interfaces in devising model membrane platforms for fundamental biophysical studies and bioanalytical devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.