Abstract

AbstractThe rational design of low‐cost transition metal catalysts that exhibit high activity and selectivity may be the most significantly investigated in heterogeneous catalysis. In this study, Co3‐xMnxO4 (x=0.75, 1.0, and 1.5) mixed metal oxides were successfully synthesized by a controlled template‐free autoclave strategy and studied for toluene oxidation. It is found that the Co‐rich sample showed markedly enhanced activity and the 3D dandelion‐like Co2.25Mn0.75O4 catalyst exhibited in the highest toluene oxidation rate (8.9 μmol/(gcats)) and a 100 % toluene conversion at 239 °C. In situ DRIFTS study indicates that toluene was sequentially oxidized to benzyl radical, benzaldehyde, benzene, oxalic acid, and finally to CO2 and H2O. The interaction between Co and Mn, in conjunction with the high concentration of surface oxygen species and rich surface oxygen vacancies, reasonably explains the elevated catalytic activity and thermal stability for toluene oxidation over 3D flower‐like Co3‐xMnxO4 spinel catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call