Abstract

Novel solid-phase microextraction fibers were fabricated by electrochemical deposition of cobalt on the pretreated nickel/titanium alloy (NiTi) fiber substrate and subsequent in situ growth of zeolitic imidazolate framework-67 (ZIF-67) followed by annealing treatment. The Co@ZIF-67 coating was used as a precursor and template for controlled fabrication of the Co@ZIF-67-derived coatings including Co@ZIF-67-Co3O4 and carbonaceous composite coatings. . The extraction performance of the Co@ZIF-67-derived coatings was evaluated using typical aromatic compounds coupled to high-performance liquid chromatography with UV detection. The results clearly demonstrate that the extraction selectivity is subject to the surface elemental composition of the ZIF-67-derived coatings. In view of long-term stability and good extraction selectivity, the Co@ZIF-67-C coating was selected for the enrichment and determination of polycyclic aromatic hydrocarbons (PAHs). Under the optimized conditions, the calibration curves were linear in the range of 0.05–100 μg•L−1 with the correlation coefficients above 0.998. Limits of detection were 0.005–0.042 μg•L−1. Furthermore, the intra-day and inter-day repeatability of the proposed method with the single fiber varied from 2.3% to 5.8% and from 3.3% to 6.9%, respectively. The fiber-to-fiber reproducibility ranged from 4.1% to 8.5%. The proposed method was suitable for selective enrichment and determination of target PAHs from real water samples. Moreover, the fabricated fiber showed precisely controllable growth and 150 extraction and desorption cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call