Abstract

The synthesis of biophotonic crystals of insects, cubic crystalline single networks of chitin having large open-space lattices, requires the selective diffusion of monomers into only one of two non-intersecting water-channel networks embedded within the template, ordered smooth endoplasmic reticulum (OSER). Here we show that the topology of the circumferential bilayer of polymer cubosomes (PCs)—polymeric analogues to lipid cubic membranes and complex biological membranes—differentiate between two non-intersecting pore networks embedded in the cubic mesophase by sealing one network at the interface. Consequently, single networks having large lattice parameters (>240 nm) are synthesized by cross-linking of inorganic precursors within the open network of the PCs. Our results pave the way to create triply periodic structures of open-space lattices as photonic crystals and metamaterials without relying on complex multi-step fabrication. Our results also suggest a possible answer for how biophotonic single cubic networks are created, using OSER as templates.

Highlights

  • The synthesis of biophotonic crystals of insects, cubic crystalline single networks of chitin having large open-space lattices, requires the selective diffusion of monomers into only one of two non-intersecting water-channel networks embedded within the template, ordered smooth endoplasmic reticulum (OSER)

  • We show that polymer cubosomes (PCs) share their interfacial topology with lipid cubic mesophases, which provides the required selectivity for diffusion of external molecules to embedded water channel networks, and serve as templates for the synthesis of single cubic networks with large open-space lattices that have been long-pursued as photonic crystals having complete photonic band gaps and metamaterials

  • We investigated the structures of PCs formed by the solution self-assembly of the branched-linear diblock copolymers composed of a hydrophilic tri-arm poly(ethylene glycol) and a hydrophobic polystyrene, PEG5503-PSn (n refers to the number average degree of polymerization of the PS; Fig. 1a)[33]

Read more

Summary

Introduction

The synthesis of biophotonic crystals of insects, cubic crystalline single networks of chitin having large open-space lattices, requires the selective diffusion of monomers into only one of two non-intersecting water-channel networks embedded within the template, ordered smooth endoplasmic reticulum (OSER). Cryogenic transmission electron microscopy (cryo-TEM) tomography, and atomic force microscopy (AFM), recent studies of the structural details of lipid cubic membranes[22] and their colloidally stabilized particles (cubosomes)[23] composed of TPMSs of lipid bilayers suggested that the outermost bilayer of the finitely-sized lipid cubic mesophases would adopt a topology in which one channel network is sealed while the other remains open to the surroundings[24,25,26,27] This topology of the circumferential bilayer presumably arises due to the minimization of the interfacial energy by not revealing the hydrophobic compartment of the bilayer to the aqueous medium. Compared to their lipid counterparts, PCs are structurally more robust under physical and chemical stresses, and their periodicity and pore size, which are an order of magnitude larger than those of lipid cubosomes, can be increased with increasing molecular weights of the polymer blocks constituting the BCPs

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.