Abstract

Bone-mimetic mineral-polymer composite materials have several applications ranging from artificial bone grafts to scaffolds for bone tissue engineering; templated mineralization is an effective approach to fabricate such composites. In this study, we synthesized bone-like composites using synthetic hydrogels having pendant side chains terminating with carboxyl groups as a template for mineralization. The role of matrix hydrophobicity on mineralization was examined using poly(ethylene glycol) hydrogels modified with varying lengths of anionic pendant side chains (CH(2) horizontal lineCHCONH(CH(2))(n)COOH, where n = 1, 3, 5, and 7). The ability of these hydrogels to undergo templated mineralization was found to be strongly dependent upon the length of the pendant side chain as is evident from the extent of calcification and morphology of the minerals. Moreover, mineralized phases formed on the hydrogels were confirmed to resemble apatite-like structures. In addition to demonstrating the importance of material hydrophobicity as a design parameter for the development of bone-like synthetic materials, our study also provides a potential explanation for the in vitro differences between the apatite-nucleating capacity of aspartate-rich osteopontin and glutamate-rich bone sialoprotein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.