Abstract

We developed a novel pH- and thermo-sensitive hydrogel as a scaffold for autologous bone tissue engineering. We synthesized this polymer by adding pH-sensitive sulfamethazine oligomers (SMOs) to both ends of a thermo-sensitive poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol)-poly(epsilon-caprolactone-co-lactide) (PCLA-PEG-PCLA) block copolymer, yielding a pH/thermo-sensitive SMO-PCLA-PEG-PCLA-SMO block copolymer. The synthesized block copolymer solution rapidly formed a stable gel under physiological conditions (pH 7.4 and 37 degrees C), whereas it formed a sol at pH 8.0 and 37 degrees C, making it injectable. This pH/thermo-sensitive hydrogel exhibited high biocompatibility in a Dulbecco's modified Eagle's medium extract test. Under physiological conditions, the hydrogel easily encapsulated human mesenchymal stem cells (hMSCs) and recombinant human bone morphogenetic protein-2 (rhBMP-2), with encapsulating efficiencies of about 90% and 85%, respectively. To assay for ectopic bone formation in vivo, we subcutaneously injected a polymer solution containing hMSCs and rhBMP-2 into the back of mice, after which we could observe hMSC differentiation for up to 7 weeks. Histological studies revealed mineralized tissue formation and high levels of alkaline phosphatase activity in the mineralized tissue. Therefore, this pH/thermo-sensitive SMO-PCLA-PEG-PCLA-SMO block copolymer demonstrated potential as an injectable scaffold for bone tissue engineering, with in situ formation capabilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call