Abstract

To develop strategies for efficient photo-electrochemical water-splitting, it is important to understand the fundamental properties of oxide photoelectrodes by synthesizing and investigating their single-crystal thin films. However, it is challenging to synthesize high-quality single-crystal thin films from copper-based oxide photoelectrodes due to the occurrence of significant defects such as copper or oxygen vacancies and grains. Here, the CuBi2 O4 (CBO) single-crystal thin film photocathode is achieved using a NiO template layer grown on single-crystal SrTiO3 (STO) (001) substrate via pulsed laser deposition. The NiO template layer plays a role as a buffer layer of large lattice mismatch between CBO and STO (001) substrate through domain-matching epitaxy, and forms a type-II band alignment with CBO, which prohibits the transfer of photogenerated electrons toward bottom electrode. The photocurrent densities of the CBO single-crystal thin film photocathode demonstrate -0.4 and -0.7mA cm-2 at even 0 VRHE with no severe dark current under illumination in a 0.1 m potassium phosphate buffer solution without and with H2 O2 as an electron scavenger, respectively. The successful synthesis of high-quality CBO single-crystal thin film would be a cornerstone for the in-depth understanding of the fundamental properties of CBO toward efficient photo-electrochemical water-splitting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.