Abstract
Herein we report a template-assisted method to synthesize molybdenum disulfide/polyaniline (MoS2/PANI) hollow microspheres with excellent electrochemical performances for supercapacitors applications. The hollow MoS2 microspheres are assembled by layered MoS2 nanosheets, which provide substantial ion channels and large surface area for electrolyte ion transport. PANI is grown on the surface of the hollow MoS2 microspheres by oxidative polymerization with different mass. The MoS2/PANI-1:2 hollow microspheres electrode possesses the maximum specific capacitance of 364 F/g at a scan rate of 5 mV/s. In addition, the specific capacitance achieves 299 F/g with a current density of 10 A/g and 84.3% of the specific capacitance is retained after 8000 cycles at 10 A/g. The energy density can be as high as 32 Wh/kg at a power density of 320 W/kg. Even at a very high power density of 8320 W/kg, the energy density still maintains 23.1 Wh/kg, showing a large power density range for supercapacitor applications. We assemble a symmetric supercapacitor by using two identical MoS2/PANI microspheres electrodes, and it shows high specific capacitances of 231, 139 F/g at 0.2 and 0.5 A/g, respectively. Our results suggest that the MoS2/PANI hollow microspheres electrode have good cycle stability and significant potential for supercapacitor applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.