Abstract

The development of electrode materials with hierarchically porous structure and high electrochemical stability is crucial for the electric energy density of supercapacitors. Hollow microspheres of Ni-Co layered double hydroxides (LDHs) and Ni-Mn LDHs are fabricated with a simple co-precipitation method at low temperature using SiO2 microspheres as a sacrifice template. The as-fabricated two LDH hollow microspheres possess a unique 3D architecture and exhibit high specific capacitance, as well as excellent rate and cycling performances as electrode materials of supercapacitors. A specific capacitance of 1766.4 F g−1 at 1 A g−1 is achieved for Ni-Co LDHs electrode, much higher than that of Ni-Mn LDHs. A hybrid capacitor composed of Ni-Co LDHs hollow spheres and activated carbon is fabricated and evaluated for practical application, providing an energy density of 44.3 Wh kg−1 at a power density of 0.425 kW kg−1. This study indicates that the hollow LDH microsphere prepared by our method is a promising material for supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.