Abstract

Demonstrated herein is an unprecedented porous template-assisted reaction at the solid-liquid interface involving bond formation, which is typically collision-driven and occurs in the solution and gas phases. The template is a TMA (trimesic acid) monolayer with two-dimensional pores that host fullerenes, which otherwise exhibit an insignificant affinity to an undecorated graphite substrate. The confinement of C84 units in the TMA pores formulates a proximity that is ideal for bond formation. The oligomerization of C84 is triggered by an electric pulse via a scanning tunneling microscope tip. The spacing between C84 moieties becomes 1.4 nm, which is larger than the edge-to-edge diameter of 1.1-1.2 nm of C84 due to the formation of intermolecular single bonds. In addition, the characteristic mass-to-charge ratios of dimers and trimers are observed by mass spectrometry. The experimental findings shed light on the active role of spatially tailored templates in facilitating the chemical activity of guest molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call