Abstract

In this study, green light-activated photoiniferter reversible addition-fragmentation chain transfer (RAFT) polymerization of glycerol methacrylate was performed using an ω,ω-heterodifunctional macro-RAFT agent. Because of the different RAFT controllability of two RAFT groups toward methacrylic monomers, only one RAFT group was activated under green light irradiation, leading to the formation of a diblock copolymer macro-RAFT agent with one RAFT group located at the chain end and the other RAFT group located between two blocks. The obtained diblock copolymer macro-RAFT agent was then used to mediate aqueous photoinitiated RAFT dispersion polymerization of diacetone acrylamide (DAAM), which formed μ-A(BC)C miktoarm star polymer assemblies with a diverse set of morphologies. Comparing with the ABC triblock copolymer, it was found that the architecture of the μ-A(BC)C miktoarm star polymer facilitated the formation of higher-order morphologies. Kinetic studies indicated that the aqueous photoinitiated RAFT dispersion polymerization exhibited ultrafast polymerization behavior, with quantitative monomer conversion being achieved within 5 min. Size exclusion chromatography analysis confirmed that good RAFT control was maintained during the polymerization. A morphological phase diagram for μ-A(BC)C miktoarm star polymer assemblies was constructed by varying the monomer concentration and the [DAAM]/[Macro-RAFT] ratio. We expect that this study not only develops an approach for the preparation of miktoarm star polymer assemblies but also provides mechanistic insights into the polymerization-induced self-assembly of nonlinear polymers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.