Abstract
The objective of the paper is to present a method whereby the time required for a steel structure to sustain the effects of a prescribed temperature rise according to real fire curves can be calculated. The method is divided into two parts. The first part deals with the post-yield behaviour of steel structures at elevated temperatures. It takes into account the variation of the properties of steel material with temperature in an incremental elastoplastic analysis SC, that the safety factor of the structure under certain fire conditions can be assessed. The second part deals with the heat transfer problem of bare steel members in real fire. Factors affecting the heat transfer process are examined and a model for predicting the temperature variation with time under real fire conditions is proposed. This model results in more accurate temperature predictions for steel members than those obtained from previously adopted model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have