Abstract

In this paper, we address the synthesis of nano-coalesced microstructured zinc oxide thin films via a simple thermal evaporation process. The role of synthesis temperature on the structural, morphological, and optical properties of the prepared zinc oxide samples was deeply investigated. The obtained photoluminescence and X-ray photoelectron spectroscopy outcomes will be used to discuss the surface structure defects of the prepared samples. The results indicated that the prepared samples are polycrystalline in nature, and the sample prepared at 700 °C revealed a tremendously c-axis oriented zinc oxide. The temperature-driven morphological evolution of the zinc oxide nano-coalesced microstructures was perceived, resulting in transformation of quasi-mountain chain-like to pyramidal textured zinc oxide with increasing the synthesis temperature. The results also impart that the sample prepared at 500 °C shows a higher percentage of the zinc interstitial and oxygen vacancies. Furthermore, the intensity of the photoluminescence emission in the ultraviolet region was enhanced as the heating temperature increased from 500 °C to 700 °C. Lastly, the growth mechanism of the zinc oxide nano-coalesced microstructures is discussed according to the reaction conditions.

Highlights

  • Zinc oxide (ZnO) has been widely studied and has received noteworthy attention since 1935 [1], as our daily lives and current industries crucially rely on this compound

  • There are some drawbacks relating to these processes in contrast to the thermal evaporation method, such as: (i) these methods demanded additional fabrication step, for example furnishing a seed layer by physical methods prior to the actual synthesis [14]; (ii) these methods required a precise control of the composition, pH, and concentration of an electrolyte solution; (iii) the growth rate of these methods was inferior to the vapor phase process [15]; and (iv) these methods needed a post thermal annealing treatment to alter the thin film’s internal crystallization and concurrently reduced the defects in the thin film and prevented the growth of other crystalline phases [16]

  • We comprehensively studied the connection between the surface structure defects with PL and XPS spectra as other researchers did not focus on this

Read more

Summary

Introduction

Zinc oxide (ZnO) has been widely studied and has received noteworthy attention since 1935 [1], as our daily lives and current industries crucially rely on this compound. It has been recognized as one of the well-known potential materials that could be beneficial and serviceable for electronic and optoelectronic applications owing to its attractive properties. Materials 2016, 9, 300 it to be suitable for UV optoelectronic applications [3] This notable exciton binding energy of ZnO makes it a more attractive material than other compounds, especially GaN, a compound with exciton binding energy of 26 meV. There are some drawbacks relating to these processes in contrast to the thermal evaporation method, such as: (i) these methods demanded additional fabrication step, for example furnishing a seed layer by physical methods prior to the actual synthesis [14]; (ii) these methods required a precise control of the composition, pH, and concentration of an electrolyte solution; (iii) the growth rate of these methods was inferior to the vapor phase process [15]; and (iv) these methods needed a post thermal annealing treatment to alter the thin film’s internal crystallization and concurrently reduced the defects in the thin film and prevented the growth of other crystalline phases [16]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.