Abstract

Oxygen vacancies in crystal have an important impact on the electronic properties of zinc oxide (ZnO). In this paper, ZnO nanorods with rich oxygen vacancies were prepared through a novel gas-assisted hydrothermal growth process. X-ray diffraction data showed that single-phase ZnO with the wurtzite crystal structure was obtained and the crystallite size decreased as the reaction atmosphere pressure increased. The oxygen vacancies of ZnO were confirmed using x-ray photoelectron spectroscopy and photoluminescence spectroscopy. The results showed that the concentration of oxygen vacancies could be regulated by both the atmosphere pressure and the atmosphere properties. The oxygen vacancies in ZnO samples were reduced when the pressure increase in the hydrogen reaction environment (reducing atmosphere) and the oxygen vacancies in ZnO samples were increased when the pressure increased in the oxygen reaction environment (oxidizing atmosphere).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.