Abstract
The citrus pest Cacopsylla citrisuga (Yang & Li), a vector for Citrus Huanglongbing (HLB), exhibits distinct sensitivity to temperature variations. This study utilized an age-stage, 2-sex life table to evaluate the development and reproduction of C. citrisuga across 5 temperatures (17, 20, 25, 28, and 31 °C). The findings indicate that Cacopsylla citrisuga can complete its life cycle within the range of 17-28 °C, with optimal temperature at 20 °C, where the highest survival and fecundity rates in females were observed. An increase in temperature correlates with a decrease in developmental duration for all stages, with the shortest at 28 °C. The net reproductive rate (R0) peaked at 20 °C, while the intrinsic rate of increase (r) and the finite rate of increase (λ) increased with the increase of temperature. Conversely, the average generation time (T) decreased with the increase of temperature, underscoring the pivotal role of temperature in population dynamics. The developmental threshold temperature and effective accumulated temperature were determined for each stage, furnishing crucial parameters for pest management strategies. This research highlights the importance of temperature in dictating the distribution and prevalence of C. citrisuga, offering valuable insights for the development of targeted control measures against this HLB vector.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have