Abstract

Explicit expressions for all the transport coefficients have recently been found for a trapped Bose condensed gas at finite temperatures. These transport coefficients are used to define the characteristic relaxation times, which determine the crossover between the mean-field collisionless and the two-fluid hydrodynamic regime. These relaxation times are evaluated as a function of the position in the trap potential. We show that all the relaxation times are dominated by the collisions between the condensate and the non-condensate atoms, and are much smaller than the standard classical collision time used in most of the current literature. The 1998 MIT study of the collective modes at finite temperature is shown to have been well within the two-fluid hydrodynamic regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call