Abstract

Latex films that are formed by evaporating dispersions in the absence of volatile organic compounds (VOCs) typically suffer from poor mechanical strength compared to solution-cast latex films. In our previous work, we discovered that this disadvantage can be overcome by using microspheres crosslinked with rotaxanes, which consist of a crown ether wheel and an axle. In the present study, to obtain tougher latex films, we investigated the relationship between the mechanical properties and the nanostructures of films prepared at different film-formation temperatures (FFT), i.e., FFTs above and below the glass-transition temperatures (Tg) of the microspheres. Tensile tests revealed that the films showed the highest fracture energies when the film was formed at a temperature higher than the Tg of the microspheres and followed by annealing. In addition, the interfacial thickness (tinter), which is an indicator of the magnitude of the relationship between the tinter of neighboring microspheres, was correlated with the fracture energy as a function of annealing time. Thus, tough latex films could be obtained without the use of any additives by increasing the FFT during the formation and subsequent annealing of the film. This study may lead to new applications, e.g., VOC-free coatings for biomaterials. Latex films typically suffer from poor mechanical strength compared to solution-cast latex films. In the present study, to obtain tougher latex films, we investigated the relationship between the mechanical properties and the nanostructures of films prepared at different film-formation temperatures (FFTs), i.e., FFTs above and below the glass-transition temperatures (Tg) of the microspheres. Tensile tests revealed that the films showed the highest fracture energies when the film was formed at a temperature higher than the Tg of the microspheres and followed by annealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.