Abstract

ABSTRACT Bixbyite -Mn2O3 is an inexpensive Earth-abundant mineral that can be used to drive both oxygen evolution (OER) and oxygen reduction reactions (ORR) in alkaline conditions. It possesses a subtle orthorhombic cubic phase change near room temperature that suppresses Jahn–Teller distortions and presents a unique opportunity to study how atomic structure affects the electronic structure and catalytic activity at a temperature range that is easily accessible in OER/ORR experiments. Previously, we observed that heat-treated -Mn2O3 had a better performance as a bifunctional catalyst in the oxygen evolution (OER) and oxygen reduction reactions (ORR) (Dalton Trans. 2016, 45, 18,494–18,501). We hypothesized that heat-treatment pinned the material into a more electrochemically active cubic phase. In this manuscript, we use high-resolution X-ray diffraction to collect the temperature-dependent structures of -Mn2O3, and then input them into ab initio calculations. The electronic structure calculations indicate that the orthorhombic cubic phase transition causes the Mn 3d and O 2p bands to overlap and mix covalently, transforming -Mn2O3 from a semiconductor to a semimetal. This subtle change in structure also modifies Mn-O-Mn bond distances, which may improve the activity of the material in oxygen electrochemistry. OER and ORR experiments were performed using the same electrode at various temperatures. They show a jump in the exchange current density near the phase change temperature, demonstrating the higher activity of the cubic phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call