Abstract
Lesser cornstalk borer, Elasmopalpus lignosellus Zeller (Lepidoptera: Pyralidae), is an important sugarcane pest in southern Florida. Development of immature stages (eggs, larvae, prepupae, and pupae) of lesser cornstalk borer was observed on sugarcane at constant temperatures (13, 15, 18, 21, 24, 27, 30, 33, and 36 degrees C), 65-70% RH, and a photoperiod of 14:10 (L:D) h. Total development (from egg deposition to adult emergence) ranged from 22.8 +/- 0.3 d at 33 degrees C to 120.7 +/- 2.8 d at 13 degrees C. Lesser cornstalk borer required 543.48 DD to complete development. Developmental time decreased with increase in temperature from 13 to 33 degrees C and increased markedly at 36 degrees C in all immature stages. One linear and six nonlinear models used to model insect development (Briere-1, Briere-2, Logan-6, Lactin, Taylor, and polynomial models) were tested to describe the relationship between temperature and developmental rate (d(-1)). Criteria used to select the best model were the greatest r (2), lowest residual sum of squares (RSS), and Akaike information criterion values. The Briere-1 model fit the data best and provided the best estimates of developmental temperature thresholds for all immature stages on sugarcane. The estimated lower and upper developmental thresholds for total development were 9.3 +/- 1.8 and 37.9 +/- 0.7 degrees C, respectively. The optimal temperature estimated for the total development was 31.39 +/- 0.9 degrees C. Based on these results, we can forecast the different stages of lesser cornstalk borer at different times in sugarcane. This will enable us to choose the best time to control this pest with greater precision.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have