Abstract

Selective hydrogenation and hydrodeoxygenation (HDO) of biomass to value-added products play a crucial role in the development of renewable energy resources. However, achieving a temperature-controlled selectivity within one catalytic system while retaining excellent hydrogenation and HDO performance remains a great challenge. Here, nitrogen/oxygen (N/O) co-doped porous carbon nanosphere derived from resin polymer spheres is synthesized as the host matrix to in situ encapsulate highly dispersed Pd nanoparticles (NPs). Through N/O co-doping, the defects on the surface of carbon structure can serve as active sites to promote substrate adsorption. After a facile H2 O2 post-treatment process, the presence of abundant carboxyl groups on the porous carbon nanospheres can act as acidic sites to replace the use of acidic additives in the HDO process. Additionally, the increased surface oxygen-containing groups improve hydrophilicity to disperse catalysts in aqueous solutions. Owing to the unique highly dispersed Pd NPs and abundant surface defects, the Pd@APF-H2 O2 (2.3nm) catalysts exhibit excellent catalytic activity and temperature-controlled selectivity for hydrogenation and HDO products of biomass-derived vanillin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call