Abstract
Understanding the balance between methane (CH4) production (methanogenesis) and its oxidation is important for predicting carbon emissions from thermokarst lakes under global warming. However, the response of thermokarst lake methanogenesis and the anaerobic oxidation of methane (AOM) to warming, especially from Qinghai-Tibetan Plateau (QTP), is still not quantified. In this study, sediments were collected from 11 thermokarst lakes on the QTP. These lakes are surrounded with different vegetation types, including alpine desert (AD), alpine steppe (AS), alpine meadow (AM) and alpine swamp meadow (ASM). The results showed that methanogenesis and AOM rates exponentially increased with temperature, while the temperature sensitivity (Q10, average Q10 values of methanogenesis and AOM were 0.69–30 and 0.54–16.9 respectively) of methanogenesis were larger than AOM, but not significant, showing a similar temperature dependence of methanogenesis and AOM in thermokarst lake sediments. Thermokarst lake sediments in the ASM had higher methanogenesis and anaerobic oxidation potential, matching its higher NDVI and relative abundances of methanogens and SBM (syntrophic bacteria with methanogens). Although the thermokarst lake sediments AOM depleted 15 %–27.8 % of the total CH4 production, the AOM rate was lower than methanogenesis in thermokarst lake sediments, it did not offset increased CH4 production under anaerobic conditions. The increase in CH4 production in thermokarst lake sediments will likely lead to higher emissions within a warming world. These findings indicate that methanogenesis and AOM in thermokarst lake sediments are sensitive to climate change. Models should consider the Q10 values of methanogenesis and AOM and vegetation types when predicting carbon cycle in thermokarst lakes under global warming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.